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Geometry of paraquaternionic Kähler manifolds with torsion
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Abstract

We study the geometry of PQKT connections. We find conditions for the existence of a PQKT connection and prove that if it
exists it is unique. We show that PQKT geometry persists in a conformal class of metrics.
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1. Introduction and statement of the results

The geometries of locally supersymmetric vector multiplets in dimensions (1, 3) are known as projective special
Kähler geometries. As indicated by the name, such manifolds can be obtained from affine special Kähler manifolds
(with homogeneity properties) by a projectivization. This can also be understood from the physical point of view
in terms of the conformal calculus. One first constructs a superconformally invariant theory and then eliminates
conformal compensators by imposing gauge conditions. This gauge fixing amounts to the projectivization of the
scalar manifold underlying the superconformal theory [37,34,11–13,5,4,16,19,1,14]. On the basis of these results
such a construction could be adapted to the case of Euclidean signature, and projective special para-Kähler manifolds
are constructed in [14]. In Minkowski signature the coupling to supergravity implies that the scalar geometry is
quaternionic Kähler instead of hyper-Kähler manifolds [6]. The relation between these two kinds of geometries
can again be understood as projectivization, because every quaternionic Kähler manifold can be obtained as the
quotient of a hyper-Kähler cone [35]. The identification of the scalar geometry of Euclidean hypermultiplets in rigidly
supersymmetric theories is performed in [15]. The fact, that the scalar manifolds of Euclidean hypermultiplets are
hyper-para-Kähler manifolds is one of the main results in [15].

We recall that an almost hyper-paracomplex structure on a 4n-dimensional manifold M is a triple H =

(Jα), α = 1, 2, 3, of two almost paracomplex structures and one complex structure Jα : T M → T M satisfying
the paraquaternionic identities

J 2
α = εα, Jα Jβ = −Jβ Jα = −εγ Jγ , α, β, γ = 1, 2, 3, ε1 = ε2 = −ε3 = 1.
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Here and henceforth (α, β, γ ) is a cyclic permutation of (1, 2, 3).
When each Jα is an integrable almost (para)complex structure, H is said to be a hyper-paracomplex structure

on M . Such a structure is also sometimes called a pseudo-hyper-complex [17]. Any hyper-paracomplex structure
admits a unique torsion-free connection ∇

C P preserving J1, J1, J3 [2,3] called the complex product connection.
Examples of hyper-paracomplex structures on the simple Lie groups SL(2n + 1,R), SU (n, n + 1) are constructed
in [28].

Almost paraquaternionic structures were introduced by Libermann (Libermann called them almost quaternionic
structures of the second kind) [33]. An almost paraquaternionic structure on M is a rank-3 subbundle P ⊂ End(T M)
which is locally spanned by an almost hyper-paracomplex structure H = (Jα); such a locally defined triple H will
be called an admissible basis of P. A linear connection ∇ on T M is called paraquaternionic if ∇ preserves P, i.e.
∇Xσ ∈ Γ (P) for all vector fields X and smooth sections σ ∈ Γ (P). An almost paraquaternionic structure is said to be
paraquaternionic if there is a torsion-free paraquaternionic connection. A P-Hermitian metric is a pseudo-Riemannian
metric which is compatible with P in the sense that g(JαX, JαY ) = −εαg(X, Y ), for α = 1, 2, 3. The signature of g is
necessarily of neutral type (2n, 2n). An almost paraquaternionic (resp. paraquaternionic) manifold with a P-Hermitian
metric is said to be an almost paraquaternionic Hermitian (resp. paraquaternionic Hermitian) manifold.

For n ≥ 2, the existence of a torsion-free paraquaternionic connection is a strong condition which is equivalent
to the 1-integrability of the associated GL(n, H)Sp(1,R)-structure [2,3]. The paraquaternionic condition controls
the Nijenhuis tensor in the sense that N (X, Y )Jα := Nα(X, Y ) preserves the subbundle P. An invariant first-
order differential operator D is defined on any almost paraquaternionic manifold which is two-step nilpotent, i.e.
D2

= 0 exactly when the structure is paraquaternionic [29]. If the Levi-Civita connection of a paraquaternionic
Hermitian manifold (M, g,P) is a paraquaternionic connection then (M, g,P) is called paraquaternionic Kähler
(for short, PQK). This condition is equivalent to the statement that the holonomy group of g is contained in
Sp(n,R).Sp(1,R) [28]. A typical example is provided by the paraquaternionic projective space endowed with the
standard paraquaternionic Kähler structure [7]. Any paraquaternionic Kähler manifold of dimension 4n ≥ 8 is known
to be Einstein [21,36]. If on a PQK manifold there exists a global admissible basis (H) such that each almost
(para)complex structure (Jα) ∈ (H), α = 1, 2, 3, is parallel with respect to the Levi-Civita connection then the
manifold is called hyper-para-Kähler (for short, HPK). Such manifolds are also called hypersymplectic [23], neutral
hyper-Kähler [18,31]. In this case the holonomy group of g is contained in Sp(n,R), n > 1 [36]. Twistor and reflector
spaces on paraquaternionic Kähler manifolds are constructed and the integrability of the associated (para)complex
structures is investigated in [8] and [24], respectively. These constructions work also in the paraquaternionic
case [30].

A natural generalization of PQK spaces is the notion of paraquaternionic Kähler manifolds with torsion (for
short, PQKT) which means that there exists a paraquaternionic connection preserving the metric g with totally
skew-symmetric torsion of type (1, 2) + (2, 1) with respect to each Jα . More generally, if one considers the same
construction in the general case of an almost paraquaternionic structure and defines the almost complex structure on
the twistor space (resp. almost paracomplex structure on the reflector space) using horizontal spaces of an arbitrary
paraquaternionic connection then the integrability condition is equivalent to the condition that the torsion is of type
(0, 2) with respect each Jα [27]. The main objects of interest in this article are the differential geometric properties of
PQKT manifolds.

In Section 2 we find necessary and sufficient conditions for the almost paraquaternionic structure to be
paraquaternionic structure if the dimension is at least 8 (Theorem 2.6).

In Section 3 we find necessary and sufficient conditions for the existence of a PQKT connection in terms of the
Kähler 2-forms and show that the PQKT connection is unique if the dimension is at least 8 (Theorem 3.5), and we
prove that the PQKT manifolds are invariant under conformal transformations of the metric.

In Section 4 we prove that the (2, 0) + (0, 2) parts of the Ricci forms ρα , ρβ with respect to Jγ coincide if the
dimension is at least 8 (Theorem 4.4). We define torsion 1-form t as a suitable trace of the torsion 3-form and show
that ρα is of type (1, 1) with respect to Jα if and only if dt is of type (1, 1) with respect to each Jα , α = 1, 2, 3,
provided the dimension is at least 8 (Theorem 4.7). We show that ?-Ricci tensor ρ?α is symmetric if and only if dt is
of type (1, 1) with respect to each Jα , α = 1, 2, 3 (Corollary 4.8).

In Section 5 we show that there are no homogeneous proper PQKT manifolds (i.e. a homogeneous PQKT which
is not PQK or HPKT) with dT of type (2, 2) provided that the torsion is parallel and the dimension is at least 8
(Theorem 5.3).



S. Zamkovoy / Journal of Geometry and Physics 57 (2006) 69–87 71

2. Almost paraquaternionic structures

In this section we study the integrability of almost paraquaternionic structures. We recall that an almost
paraquaternionic structure is a G-structure with structure group GL(n, H).Sp(1,R) ∼= GL(2n,R).Sp(1,R).
The almost paraquaternionic structures have been studied intensively in the last few years, especially in the
hyper-para-Kähler and paraquaternionic Kähler cases [21,36,7,9,10,30], i.e. the structure group is further reduced
to Sp(n,R) or Sp(n,R).Sp(1,R).

Let ∇ be a paraquaternionic connection, i.e.

∇ Jα = ωβ ⊗ Jγ + εγωγ ⊗ Jβ , (2.1)

where ωα, α = 1, 2, 3, are 1-forms.
Here and henceforth (α, β, γ ) is a cyclic permutation of (1, 2, 3).
The Nijenhuis tensor Nα of an almost (para)complex structure Jα is given by

Nα(X, Y ) = [JαX, JαY ] + εα[X, Y ] − Jα[JαX, Y ] − Jα[X, JαY ].

It is well known that an almost (para)complex structure is a (para)complex structure if and only if its Nijenhuis
tensor vanishes.

The Nijenhuis bracket [[A, B]] of two endomorphisms is defined in terms of the Lie bracket of vector fields in the
following way:

[[A, B]](X, Y ) = [AX, BY ] − A[B X, Y ] − B[X, AY ] + [B X, AY ] − B[AX, Y ] − A[X, BY ]

+ (AB + B A)[X, Y ]

and [[Jα, Jα]](X, Y ) = 2Nα(X, Y ).

Proposition 2.1. Let H = (Jα) be an almost hyper-paracomplex structure on M.

(1) There exists a connection ∇
C P which preserves H. The connection ∇

C P is given by

∇
C P
X Y =

1
12

 ∑
(α,β,γ )

(Jα[JβX, Jγ Y ] − Jα[Jγ X, JβY ])− 2
3∑
α=1

(εα Jα[JαX, Y ] − εα Jα[X, JαY ])


−

1
12

3∑
α=1

(εα[JαX, JαY ] − εα Jα[JαX, Y ] − εα Jα[X, JαY ] + [X, Y ])+
1
2
[X, Y ], (2.2)

where (α, β, γ ) indicates the sum over cyclic permutations of (1, 2, 3).
(2) Its torsion tensor T H satisfies

T H
= −

1
12

3∑
α=1

εα[[Jα, Jα]], (2.3)

for any two vector fields X, Y .

Proof. One verifies easily that the formula (2.2) defines a connection ∇
C P which preserves H and whose torsion

tensor is given by (2.3). �

Remark 2.2. If we define

∇
0
X Y =

1
12

 ∑
(α,β,γ )

(Jα[JβX, Jγ Y ] − Jα[Jγ X, JβY ])− 2
3∑
α=1

(εα Jα[JαX, Y ] − εα Jα[X, JαY ])

 +
1
2
[X, Y ],

then the connection ∇
0 is characterized by the following properties:

(1) it is torsion-free: T ∇
0

= 0;
(2) ∇

0 Jα = −
1
2 [T H , Jα].
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The ∇
C P connection can be written as

∇
C P

= ∇
0
+

1
2

T H .

For the case of hyper-paracomplex structure the connection ∇
C P was defined in [3].

We need the following

Lemma 2.3. Let H = (Jα) be an almost hyper-paracomplex structure on M. Then for any vector X, Y the following
formulas hold:

[[Jα, Jβ ]](X, Y ) = JαT H (X, JβY )+ JαT H (JβX, Y )+ JβT H (X, JαY )+ JβT H (JαX, Y )
− T H (JαX, JβY )− T H (JβX, JαY ); (2.4)

−12εγ T H (X, Y ) = Jα[[Jα, Jβ ]](X, JβY )+ Jα[[Jα, Jβ ]](JβX, Y )+ Jβ [[Jα, Jβ ]](X, JαY )
+ Jβ [[Jα, Jβ ]](JαX, Y )− [[Jα, Jβ ]](JαX, JβY )− [[Jα, Jβ ]](JβX, JαY ); (2.5)

1
2
[[Jα, Jα]](X, Y ) = −εαT H (X, Y )+ JαT H (X, JαY )+ JαT H (JαX, Y )− T H (JαX, JαY ); (2.6)

2[[Jα, Jα]](X, Y ) = [[Jβ , Jβ ]](Jγ X, Jγ Y )− Jγ [[Jβ , Jβ ]](Jγ X, Y )− Jγ [[Jβ , Jβ ]](X, Jγ Y )
− εγ [[Jβ , Jβ ]](X, Y )+ [[Jγ , Jγ ]](JβX, JβY )− Jβ [[Jγ , Jγ ]](JβX, Y )
− Jβ [[Jγ , Jγ ]](X, JβY )− εβ [[Jγ , Jγ ]](X, Y ). (2.7)

Proof. The first three of these equalities follow by definition with long but standard computation. The fourth equality
is Proposition 6.1 in [30]. �

As an application of these formulas we obtain necessary and sufficient conditions for an almost hyper-paracomplex
structure H to be a hyper-paracomplex structure.

Proposition 2.4. Let H = (Jα) be an almost hyper-paracomplex structure on M. Then the following conditions are
equivalent:

(1) H is a hyper-paracomplex structure;
(2) two of the almost (para)complex structures Jα (α = 1, 2, 3) are integrable;
(3) one of the Nijenhuis brackets [[Jα, Jβ ]] (α 6= β) is zero.

If one of these conditions is verified all Nijenhuis brackets [[Jα, Jβ ]], ∀α, β, vanish.

Proof. If H is hyper-paracomplex then T H
= 0 and (2), (3) follow by (2.6) and (2.4) respectively; vice versa, (2) or

(3) imply (1) by (2.7) and (2.5) respectively. �

Proposition 2.5. Let P be an almost paraquaternionic structure and H = (Jα) be an admissible basis of P. Let ∇ be
a globally defined connection which preserves P and let T be its torsion tensor. Then

(1) There exists a globally defined connection ∇
P which preserves P. The connection ∇

P is given by

∇
P
X Y = ∇X Y +

3∑
α=1

(
εαbα −

1
3
εαb ◦ Jα

)
(X)JαY

−
1
12

3∑
α=1

(T (X, Y )− εαT (JαX, JαY )+ εα JαT (X, JαY )+ εα JαT (JαX, Y )), (2.8)

where bα , b are local 1-forms defined by

bα(X) =
1

2n − 1
tr(JαT (X)) = −

1
2n − 1

4n∑
i=1

εi g(T (X, ei ), Jαei ), b =

3∑
α=1

εαbα ◦ Jα, α = 1, 2, 3;
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(2) The torsion tensor T P of ∇
P is given by

T P = T H
+ ∂(C H ), (2.9)

where C H
=

∑3
α=1 εαaH

α ⊗ Jα , ∂ denotes the operator of alternation and

aH
α (X) =

1
2n − 1

tr(JαT H (X)) = −
1

2n − 1

4n∑
i=1

εi g(T
H (X, ei ), Jαei ), α = 1, 2, 3

are the structure 1-forms of H.

Moreover

3∑
α=1

εαaH
α ◦ Jα = 0. (2.10)

Proof. For any connection ∇ with torsion tensor T preserving P we have

[[Jα, Jα]](X, Y ) = 2∂((εγωγ ◦ Jα − εβωβ)⊗ Jβ + (ωβ ◦ Jα + ωγ )⊗ Jγ )(X, Y )

− 2T (JαX, JαY )+ 2JαT (JαX, Y )+ 2JαT (X, JαY )− 2εαT (X, Y ).

Thus, we have

6T H (X, Y )+ ∂
∑
(α,β,γ )

((2εβωα + εβωγ ◦ Jβ − εαωβ ◦ Jγ )⊗ Jα)(X, Y )

=

3∑
α=1

(T (X, Y )+ εαT (JαX, JαY )− εα JαT (JαX, Y )− εα JαT (X, JαY )). (2.11)

One verifies easily that the formula (2.8) defines a connection ∇
P which preserves P and whose torsion tensor is

6T P(X, Y ) =

3∑
α=1

(T (X, Y )+ εαT (JαX, JαY )− εα JαT (JαX, Y )− εα JαT (X, JαY ))

+ 6∂
3∑
α=1

((
εαbα −

1
3

b ◦ Jα

)
⊗ Jα

)
(X, Y ). (2.12)

Taking the appropriate trace in (2.11), we get

3εαaH
α = (2εβωα + εβωγ ◦ Jβ − εαωβ ◦ Jγ )+ (2εαbα + bβ ◦ Jγ − bγ ◦ Jβ). (2.13)

Now, equalities (2.11)–(2.13) prove (2.9). The equality (2.10) follows from (2.13). �

The following theorem gives the necessary and sufficient condition for an almost paraquaternionic structure to be
a paraquaternionic structure.

Theorem 2.6. An almost paraquaternionic structure P is a paraquaternionic structure if and only if T P = 0.

Proof. (1) Assume T P = 0. Then T H has the form

T H
= −∂

3∑
α=1

εαaH
α ⊗ Jα.

It is to easy check that ∇ = ∇
H

+
∑3
α=1 εαaH

α ⊗ Jα is a torsion-free connection. From equalities ∇ Jα =

ω̄β ⊗ Jγ + εγ ω̄γ ⊗ Jβ , where ω̄α = ωα − 2εγ aH
α , and it follows that ∇ preserves P.

(2) Now let ∇ be a paraquaternionic connection and H = (Jα) an admissible basis of P. For any torsion-free
connection ∇̄ preserving P we have

[[Jα, Jα]] = 2∂((εγωγ ◦ Jα − εβωβ)⊗ Jβ + (ωβ ◦ Jα + ωγ )⊗ Jγ ).
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Thus we obtain

6T H
= −∂

∑
(α,β,γ )

(2εβωα + εβωγ ◦ Jβ − εαωβ ◦ Jγ )⊗ Jα. (2.14)

From the formula (2.13), we get 6T H
= −6∂

∑3
α=1 εαaH

α ⊗ Jα . Hence T P = 0. �

3. Characterizations of the PQKT connection

Let (M, g, (Jα) ∈ P, α = 1, 2, 3) be a 4n-dimensional almost paraquaternionic manifold with P-Hermitian
pseudo-Riemannian metric g. We shall work locally with an admissible basis (Jα). The Kähler form Fα of each
Jα is defined by Fα = g(., Jα.). The corresponding Lee forms are given by θα = −εαδFα ◦ Jα .

For an r -form ψ we denote by Jαψ the r -form defined by Jαψ(X1, . . . , Xr ) := (−1)rψ(JαX1, . . . , JαXr ), α =

1, 2, 3. We shall use the notation dαFβ(X, Y, Z) = −d Fβ(JαX, JαY, JαZ), α, β = 1, 2, 3.
We recall the decomposition of a skew-symmetric tensor P ∈ Λ2T ∗M ⊗ T M with respect to a given

almost (para)complex structure Jα . The (1, 1), (2, 0) and (0, 2) parts of P are defined by P1,1(JαX, JαY ) =

−εαP1,1(X, Y ), P2,0(JαX, Y ) = JαP2,0(X, Y ), P0,2(JαX, Y ) = −JαP0,2(X, Y ), respectively.
For each α = 1, 2, 3, we denote by d F+

α (resp. d F−
α ) the (1, 2)+ (2, 1) part (resp. (3, 0)+ (0, 3) part) of d Fα with

respect to the almost (para)complex structure Jα . We consider the following 1-forms

θα,β = εα
1
2

4n∑
i=1

εi d F+
α (X, ei , Jβei ), α, β = 1, 2, 3.

Here and further e1, e2, . . . , en, en+1 = J3e1, en+2 = J3e2, . . . , e2n = J3en, e2n+1 = J1e1, e2n+2 = J1e2, . . . , e3n =

J1en, e3n+1 = J2e1, e3n+2 = J2e2, . . . , e4n = J2en where J1ei = e2n+i , J1en+i = e3n+i , J2ei = e3n+i , J2en+i =

−e2n+i , J3e2n+i = −e3n+i , J3ei = e2n+i , i = 1 . . . n and g(ei , ei ) = εi where εi = +1, i = 1, . . . , 2n and
εi = −1, i = 2n + 1, . . . , 4n is an orthonormal basis of the tangential space.

Note that θα,α = θα .
Let T (X, Y ) = ∇X Y − ∇Y X − [X, Y ] be the torsion tensor of ∇. We denote by the same letter the torsion tensor

of type (0,3) given by T (X, Y, Z) = g(T (X, Y ), Z). The Nijenhuis tensor is expressed in terms of ∇ as follows

Nα(X, Y ) = −εα4T 0,2
α (X, Y )+ (∇JαX Jα)(Y )− (∇JαY Jα)(X)− (∇Y Jα)(JαX)+ (∇X Jα)(JαY ),

where the (0, 2) part T 0,2
α of the torsion with respect to Jα is given by

T 0,2
α (X, Y ) =

1
4
(T (X, Y )+ εαT (JαX, JαY )− εα JαT (JαX, Y )− εα JαT (X, JαY )) . (3.15)

A 3-form ψ is of type (1, 2)+ (2, 1) with respect to an almost (para)complex structure Jα if and only if it satisfies the
equality [30]

−εαψ(X, Y, Z) = ψ(JαX, JαY, Z)+ ψ(JαX, Y, JαZ)+ ψ(X, JαY, JαZ). (3.16)

Definition. An almost paraquaternionic Hermitian manifold (M, g, (Hα) ∈ P) is a PQKT manifold if it admits a
metric paraquaternionic connection ∇ with totally skew symmetric torsion which is a (1, 2)+(2, 1)-form with respect
to each Jα, α = 1, 2, 3. If the torsion 3-form is closed then the manifold is said to be a strong PQKT manifold.

It follows that the holonomy group of ∇ is a subgroup of Sp(n,R).Sp(1,R).

By means of (2.1), (3.15) and (3.16), the Nijenhuis tensor Nα of Jα, α = 1, 2, 3, on a PQKT manifold is given
by

Nα(X, Y ) = −Aα(Y )JβX + Aα(X)JβY − JαAα(Y )Jγ X + JαAα(X)Jγ Y, (3.17)

where

Aα = ωβ − εα Jαωγ . (3.18)
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Remark 1. The torsion of ∇ is a (1, 2)+(2, 1)-form with respect to any (local) almost (para)complex structure J ∈ P.
In fact, it is sufficient that the torsion is a (1, 2) + (2, 1)-form with respect to the only two almost (para)complex
structures of (H) since Proposition 6.1 in [30] gives the necessary expression for NJα by NJβ and NJγ . Indeed, it is
easy to see that the formula from Proposition 6.1 in [30] holds for the (0, 2) part T 0,2

α , α = 1, 2, 3, of the torsion.
Hence, the vanishing of the (0, 2) part of the torsion with respect to any two almost (para)complex structures in (H)
implies the vanishing of the (0, 2) part of T with respect to the third one.

On a PQKT manifold there are three naturally associated 1-forms defined by

tα(X) = εα
1
2

4n∑
i=1

εi T (X, ei , Jαei ), α = 1, 2, 3. (3.19)

Following [25], we have

Proposition 3.1. On a PQKT manifold J1t1 = J2t2 = J3t3.

Proof. Applying (3.16) with respect to Jβ we obtain

tα(X) = εα
1
2

4n∑
i=1

εi T (X, ei , Jαei ) = −
1
2

4n∑
i=1

T (X, Jβei , Jγ ei )

=
1
2

4n∑
i=1

εi T (JβX, ei , Jγ ei )+
1
2

4n∑
i=1

εi T (JβX, ei , Jγ ei )− εα
1
2

4n∑
i=1

εi T (X, ei , Jαei ).

The last equality implies tα = εαεβ Jβ tγ which proves the assertion. �

We introduce the torsion 1-form on PQKT manifolds via the equality

t (X) = −
1
2

4n∑
i=1

εαεi T (JαX, ei , Jαei ). (3.20)

We need the following

Lemma 3.2. For a 3-form T of type (1, 2)+ (2, 1) with respect to each Jα one has

4n∑
i, j=1

εiε j g(T (ei , e j ), T (Jγ ei , Jβe j )) = 0,
4n∑

i, j=1

εiε j g(T (ei , e j ), T (Jβei , Jβe j )) = −
1
3
εβ |T |

2,

where | · |
2 denotes the norm with respect to the metric g.

Proof. This proof is very similar to the proof of Lemma 3.2 in [26] and we omit it. �

Further, we have

Theorem 3.3. Let (M, g, (Jα ∈ P)) be a 4n-dimensional PQKT manifold. Then the following identities hold

4n∑
i, j=1

εi (∇X T )(JαY, ei , Jαei ) = −2εα(∇X t)(Y ); (3.21)

4n∑
i, j=1

εiε j dT (e j , Jαe j , ei Jαei ) = 8εαδt − 8εα|t |2 +
4
3
εα|T |

2,

4n∑
i, j=1

εiε j dT (e j , Jβe j , ei Jγ ei ) = 0, (3.22)

where δ is the codifferential with respect to g.
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Proof. The formula (3.21) follows from (2.1) and definition (3.20) of the torsion 1-form by straightforward
calculations. To prove (3.22) we need the expression for dT in terms of ∇ [20,25],

dT (X, Y, Z ,U ) =
σ

XY Z
{(∇X T )(Y, Z ,U )+ 2g(T (X, Y ), T (Z ,U ))} − (∇U T )(X, Y, Z), (3.23)

where σ
XY Z denotes the cyclic sum of X, Y, Z . Taking the appropriate trace in (3.23) and applying Lemma 3.2 we

obtain the first equality in (3.22). Finally, from (3.23) combined with (3.21) and Lemma 3.2 we get that

4n∑
i, j=1

εiε j dT (e j , Jβe j , ei Jγ ei ) = −4
4n∑

i, j=1

εiε j g(T (ei , e j ), T (Jγ ei , Jβe j )) = 0. �

Theorem 3.4. Every PQKT is a paraquaternionic manifold.

Proof. This is an immediate consequence of (3.17) and Theorem 2.6 �

However, the converse to the above property is not always true. In fact, we have

Theorem 3.5. Let (M, g, (Jα ∈ P)) be a 4n-dimensional (n > 1) paraquaternionic manifold with P-Hermitian
metric g. Then M admits a PQKT structure if and only if the following conditions hold

(dαFα)
+

− (dβFβ)
+

=
1
2

(
εγ Kα ∧ Fβ − εβ JβKβ ∧ Fα − εα(Kβ − JαKα) ∧ Fγ

)
, (3.24)

where (dαFα)+ denotes the (1, 2) + (2, 1) part of (dαFα) with respect to Jα, α = 1, 2, 3, and the 1-forms
Kα, α = 1, 2, 3, are given by

Kα =
1

1 − n

(
εα Jβθα + εβθα,γ

)
. (3.25)

The metric paraquaternionic connection ∇ with torsion 3-form of type (1, 2)+ (2, 1) is unique and is determined by

∇ = ∇
g

+
1
2

(
(dαFα)

+
−

1
2

(
εα JαKα ∧ Fγ + εγ Kα ∧ Fβ

))
, (3.26)

where ∇
g is the Levi-Civita connection of g.

Proof. To prove the ‘if’ part, let ∇ be a metric paraquaternionic connection satisfying (2.1) whose torsion T has the
required properties. We follow the scheme in [25]. Since T is skew-symmetric, we have

∇ = ∇
g

+
1
2

T . (3.27)

We obtain using (2.1) and (3.27) that

1
2
(T (X, JαY, Z))+ (T (X, Y, JαZ)) = −g

(
(∇

g
X Jα)Y, Z

)
−ωβ(X)Fγ (Y, Z)− εγωγ (X)Fβ(Y, Z). (3.28)

The tensor ∇
g Jα is decomposed by parts according to ∇ Jα = (∇ Jα)2,0 + (∇ Jα)0,2, where [30,22]

g
(
(∇

g
X Jα)

2,0Y, Z
)

= −
1
2

(
εα(d Fα)

+(X, JαY, JαZ)+ (d Fα)
+(X, Y, Z)

)
(3.29)

g
(
(∇

g
X Jα)

0,2Y, Z
)

=
1
2
(g(Nα(X, Y ), JαZ)− g(Nα(X, Z), JαY )− g(Nα(Y, Z), JαX)) . (3.30)

Taking the (2, 0) part in (3.28) we obtain using (3.29) that

T (X, JαY, Z)+ T (X, Y, JαZ) = (εαd F+
α (X, JαY, JαZ)+ d F+

α (X, Y, Z))

− Cα(X)Fγ (Y, Z)+ εγCα(JαX)Fβ(Y, Z), (3.31)
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where

Cα = ωβ + εα Jαωγ . (3.32)

The cyclic sum of (3.31) and the fact that T and (d Fα)+ are (1, 2)+ (2, 1)-forms with respect to each Jα give

T = (dαFα)
+

−
1
2

(
εα JαCα ∧ Fγ + εγCα ∧ Fβ

)
. (3.33)

Further, we take the contractions in (3.33) to get

Jαtα = −θα − εγ JβCα,

Jαtα = εβ Jγ θβ,α − nεα JγCβ ,

Jαtα = −εγ Jβθγ,α − nεβ JαCγ .

(3.34)

Using Proposition 3.1, (3.18) and (3.32), we obtain consequently from (3.34) that

εαAα = −JαCβ + εα JγCγ = Jβ
(
θγ − θβ

)
, (3.35)

(n − 1)εγ JβCα = θα + εα Jβθα,γ . (3.36)

Then (3.24) and (3.25) follow from (3.33) and (3.36).
For the converse, we define ∇ by (3.26). To complete the proof we have to show that ∇ is a paraquaternionic

connection. We calculate

g ((∇X Jα)Y, Z) = g
(
(∇

g
X Jα)Y, Z

)
+

1
2
(T (X, JαY, Z)+ T (X, Y, JαZ))

= −ωβ(X)Fγ (Y, Z)− εγωγ (X)Fβ(Y, Z),

where we used (3.29), (3.30), (3.35), (3.25), (3.18), (3.32) and the compatibility condition (3.24) to get the last
equality. The uniqueness of ∇ follows from (3.26). �

In the case of a hyper-para-Kähler manifold with torsion (for short, HPKT), Kα = d F−
α = 0 and Theorem 3.5 is a

consequence of the general results in [30] which imply that on a para-Hermitian manifold there exists a unique linear
connection with totally skew-symmetric torsion preserving the metric and the (para)complex structure.

As a consequence of the proof of Theorem 3.5, we get

Proposition 3.6. The Nijenhuis tensors of a PQKT manifold depend only on the difference between the Lie forms. In
particular, the almost (para)complex structures Jα on a PQKT manifold (M, (Jα) ∈ P, g,∇) are integrable if and
only if

θα = θβ = θγ .

Proof. The Nijenhuis tensors are given by (3.17) and (3.35). �

Corollary 3.7. On a 4n-dimensional PQKT manifold the following formulas hold

Jβθα,γ = −Jγ θα,β ,

(n2
+ n)θα − nθβ − n2θγ − εβ Jγ θβ,α − nεγ Jαθγ,β + (n + 1)εα Jβθα,γ = 0. (3.37)

If n = 1 then

θα = −εα Jβθα,γ = εα Jγ θα,β .

Proof. The first formula follows directly from the system (3.34). Solving the system (3.34) with respect to Cα we
obtain

(n3
− 1)εγ JβCα = (θα + εβ Jγ θβ,α)+ n(θβ + εγ Jαθγ,β)+ n2(θγ + εα Jβθα,γ ). (3.38)

Then (3.37) is a consequence of (3.38) and (3.36). The last assertion follows from (3.36). �
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Corollary 3.8. On a 4n-dimensional (n > 1) PQKT manifold the sp(1,R) connection 1-forms are given by

ωβ =
1
2
εα Jβ

(
θγ − θβ +

1
1 − n

θα

)
+

1
2(1 − n)

εβθα,γ . (3.39)

Proof. The proof follows in a straightforward way from (3.35), (3.36), (3.18) and (3.32). �

Theorem 3.5 and the above formulas lead to the following criterion.

Proposition 3.9. Let (M, g, (Jα)) be a 4n-dimensional (n > 1) PQKT manifold. The following conditions are
equivalent:

(i) (M, g, (H)) is a local HPKT manifold;
(ii) dαF+

α = dβF+

β = dγ F+
γ ;

(iii) θα = −εα Jβθα,γ .

Proof. If (M, g, (H)) is an HPKT manifold, the connection 1-forms are ωα = 0, α = 1, 2, 3. Then (ii) and (iii)
follow from (3.32), (3.36), (3.25) and (3.24).

If (iii) holds, then (3.36) and (3.35) yield Cα = Aα = 0, α = 1, 2, 3, since n > 1. Consequently, 2ωα =

JβCβ − Jβ Aβ = 0 by (3.32) and (3.18). Thus the equivalence of (i) and (iii) is proved.
Let (ii) holds. Then we compute that θα = Jγ θβ,α . Since n > 1, the equality (3.38) leads to Cα = 0, α = 1, 2, 3,

which forces ωα = 0, α = 1, 2, 3, as above. This completes the proof. �

The next theorem shows that PQKT manifolds are stable under conformal transformations.

Theorem 3.10. Let (M, g, (Jα),∇) be a 4n-dimensional PQKT manifold. Then every pseudo-Riemannian metric ḡ
in the conformal class [g] admits a PQKT connection. If ḡ = f g for a function f then the PQKT connection ∇̄

corresponding to ḡ is given by

ḡ(∇̄X Y, Z) = f g(∇X Y, Z)+
1
2
(d f (X)g(Y, Z)+ d f (Y )g(X, Z)− d f (Z)g(X, Y ))

−
1
2

(
εα Jαd f ∧ Fα + εβ Jβd f ∧ Fβ + εγ Jγ d f ∧ Fγ

)
(X, Y, Z). (3.40)

The torsion tensors T and T̄ and the torsion 1-forms t and t̄ of ∇ and ∇̄ are related by

T̄ = f T − εα Jαd f ∧ Fα − εβ Jβd f ∧ Fβ − εγ Jγ d f ∧ Fγ . (3.41)

t̄ = t − (2n + 1)d ln f. (3.42)

Proof. First we assume n > 1. We apply Theorem 3.5 to the paraquaternionic Hermitian manifold (M, ḡ =

f g, (Jα) ∈ P). We denote the objects corresponding to the metric ḡ by a line above the symbol, e.g. F̄α denotes
the Kähler form of Jα with respect to ḡ. An easy calculation gives the following sequence of formulas

dα F̄+
α = −εα Jαd f ∧ Fα + f dαF+

α ; θ̄α = θα + (2n − 1)d ln f ; θ̄α,γ = θα,γ + εγ Jβd ln f. (3.43)

We substitute (3.43) into (3.25), (3.35) and (3.39) to get

K̄α = Kα − 2εα Jβd ln f, Ā = A, ω̄α = ωα − εα Jβd ln f. (3.44)

Using (3.43) and (3.44) we verify that the conditions (3.24) with respect to the metric ḡ are fulfilled. Theorem 3.5
implies that there exists a PQKT connection ∇̄ with respect to (ḡ, P). Using the well known relation between the
Levi-Civita connections of conformally equivalent metrics, (3.43) and (3.44), we obtain (3.40) from (3.26).

Using (3.40), we get (3.41) and consequently (3.42). �

Namely, any conformal metric of a PQK, HPK or HPKT manifold will give a PQKT manifold. This leads to the
notion of locally conformally PQK (resp. locally conformally HPK, resp. locally conformally HPKT) manifolds (for
short, l.c.PQK (resp. l.c.HPK, resp. l.c.HPKT) manifolds) in the context of PQKT geometry.
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We recall that a paraquaternionic Hermitian manifold (M, g,P) is said to be an l.c.PQK (resp. l.c.HPK, resp.
l.c.HPKT) manifold if each point p ∈ M has a neighborhood Up such that g|Up is conformally equivalent to a PQK
(resp. HPK, resp. HPKT) metric.

For example, the Kodaira–Thurston surface modeled on ˜SL(2,R) × R/Γ is on example of a compact l.c.HPKT
which is not globally conformal HPKT [30].

Theorems 3.10, 3.5 together with Propositions 3.6 and 3.9 imply the following

Corollary 3.11. Every l.c.PQK manifold admits a PQKT structure.
Further, if (M, g, (Jα),∇) is a 4n-dimensional n > 1 PQKT manifold then:

(i) (M, g, (Jα),∇) is an l.c.PQK manifold if and only if

T = −
1

2n + 1

(
tα ∧ Fα + tβ ∧ Fβ + tγ ∧ Fγ

)
, dt = 0; (3.45)

(ii) (M, g, (Jα),∇) is an l.c.HPKT manifold if and only if the 1-form θα + εα Jβθα,γ is closed, i.e.

d(θα + εα Jβθα,γ ) = 0;

(iii) (M, g, (Jα),∇) is an l.c.HPK manifold if an only if (3.45) holds and

θα + εα Jβθα,γ =
2(1 − n)

2n + 1
t.

4. Curvature of a PQKT space

Let R = [∇,∇] − ∇[,] be the curvature tensor of type (1,3) of ∇. We denote the curvature tensor of type (0,4)
R(X, Y, Z , V ) = g(R(X, Y )Z , V ) by the same letter. There are three Ricci forms and three scalar functions given by

ρα(X, Y ) =
1
2

4n∑
i=1

εi R(X, Y, ei , Jαei ), α = 1, 2, 3,

Scalα,β =

4n∑
i=1

εiεαρα(ei , Jβei ), α, β = 1, 2, 3.

Proposition 4.1. The curvature of a PQKT manifold (M, g, (Jα),∇) satisfies the following relations

[R(X, Y ), Jα] =
1
n

(
−εαργ (X, Y )⊗ Jβ + εαρβ(X, Y )⊗ Jγ

)
, (4.46)

εγ ρα = dωα + εαωβ ∧ ωγ . (4.47)

Proof. We follow the classical scheme (see e.g. [30]). Using (2.1), we obtain

[R(X, Y ), Jα] = (dωβ + εβωγ ∧ ωα)(X, Y )⊗ Jγ + εγ (dωγ + εγωα ∧ ωβ)(X, Y )⊗ Jβ .

Taking the trace in the last equality, we get

ρα(X, Y ) =
1
2

4n∑
i=1

εi R(X, Y, ei , Jαei ) = −
1
2

4n∑
i=1

εβεi R(X, Y, Jβei , Jα Jβei )

= −
1
2

4n∑
i=1

εi R(X, Y, ei , Jαei )+ 2nεγ (dωα + εαωβ ∧ ωγ )(X, Y ). �

Using Proposition 4.1 we find a simple necessary and sufficient condition for a PQKT manifold to be an HPKT
one, i.e. the holonomy group of ∇ to be a subgroup of Sp(n,R).

Proposition 4.2. A 4n-dimensional (n > 1) PQKT manifold is a local HPKT manifold if and only if all the three
Ricci forms vanish, i.e. ρ1 = ρ2 = ρ3 = 0.
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Proof. If a PQKT manifold is an HPKT manifold then the holonomy group of ∇ is contained in Sp(n,R). This
implies ρα = 0, α = 1, 2, 3.

For the converse, let the three Ricci forms vanish. Eqs. (4.47) mean that the curvature of the Sp(1,R) connection
on P vanish. Then there exists a local basis (Iα, α = 1, 2, 3) of almost (para)complex structures on P and each Iα is ∇

parallel, i.e. the corresponding connection 1-forms ωIα = 0, α = 1, 2, 3. Then each Iα is a (para)complex structure,
by (3.17) and (3.18). This implies that the PQKT manifold is a local HPKT manifold. �

The Ricci tensor Ric and scalar curvatures Scal and Scalα of the PQKT connection ∇ are defined by

Ric(X, Y ) =

4n∑
i=1

εi R(ei , X, Y, ei ), Scal =

4n∑
i=1

εi Ric(ei , ei ), Scalα = −

4n∑
i=1

εi Ric(ei , Jαei ).

We denote by Ricg, Scalg, ρg
α , etc. the corresponding objects for the metric g, i.e. the same objects taken with

respect to the Levi-Civita connection ∇
g . We may consider (g, Jα) as an almost (para)Hermitian structure. The

tensor ρ?α(X, Y ) = ρ
g
α(X, JαY ) is known as the ?-Ricci tensor of the almost (para)Hermitian structure. It is equal

to ρ?α(X, Y ) = −
∑2n

i=1 Rg(ei , X, JαY, Jαei ) by the Bianchi identity. The function Scalgα is known also as the ?-scalar
curvature. In general, the ?-Ricci tensor is not symmetric and the ?-Einstein condition is a strong condition. We shall
see in this section that the scalar curvature functions are not independent and we define a new scalar invariant, the
“paraquaternionic ?-scalar curvature” of a PQKT space.

Our main technical result is the following

Proposition 4.3. Let (M, g, (Jα),∇) be a 4n-dimensional PQKT manifold. The following formulas hold

nεαρα(X, JαY )+ εβρβ(X, JβY )+ εγ ργ (X, Jγ Y )

= nRic(X, Y )+
n

4
εα(dT )α(X, JαY )− n(∇X t)(Y ); (4.48)

(n − 1)εαρα(X, JαY ) =
n(n − 1)

n + 2
Ric(X, Y )−

n(n − 1)
(n + 2)

(∇X t)Y

+
n

4(n + 2)
{(n + 1)εα(dT )α(X, JαY )− εβ(dT )β(X, JβY )

− εγ (dT )γ (X, Jγ Y )}, (4.49)

where (dT )α(X, Y ) =
∑4n

i=1 εi dT (X, Y, ei , Jαei ).

Proof. Since the torsion is a 3-form, we have [20,25]

(∇
g
X T )(Y, Z ,U ) = (∇X T )(Y, Z ,U )+

1
2

σ

XY Z
{g(T (X, Y ), T (Z ,U ))} , (4.50)

where σ
XY Z denotes the cyclic sum of X, Y, Z .

The exterior derivative dT is given by

dT (X, Y, Z ,U ) =
σ

XY Z
{(∇X T )(Y, Z ,U )+ g(T (X, Y ), T (Z ,U ))}

− (∇U T )(X, Y, Z)+
σ

XY Z
{g(T (X, Y ), T (Z ,U ))} . (4.51)

The first Bianchi identity for ∇ states

σ

XY Z
R(X, Y, Z ,U ) =

σ

XY Z
{(∇X T )(Y, Z ,U )+ g(T (X, Y ), T (Z ,U ))} . (4.52)

We denote by B the Bianchi projector, i.e. B(X, Y, Z ,U ) =
σ

XY Z R(X, Y, Z ,U ).
The curvature Rg of the Levi-Civita connection is connected by R in the following way

Rg(X, Y, Z ,U ) = R(X, Y, Z ,U )−
1
2
(∇X T )(Y, Z ,U )+

1
2
(∇Y T )(X, Z ,U )

−
1
2

g(T (X, Y ), T (Z ,U ))−
1
4

g(T (Y, Z), T (X,U ))−
1
4

g(T (Z , X), T (Y,U )). (4.53)
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Define D by D(X, Y, Z ,U ) = R(X, Y, Z ,U )− R(Z ,U, X, Y ), we obtain from (4.53)

D(X, Y, Z ,U ) =
1
2
(∇X T )(Y, Z ,U )−

1
2
(∇Y T )(X, Z ,U )−

1
2
(∇Z T )(U, X, Y )+

1
2
(∇U T )(Z , X, Y ), (4.54)

since Dg of Rg is zero.
Using (4.46) and (4.52), we find the following relation between the Ricci tensor and the Ricci forms

ρα(X, Y ) = −
1
2

4n∑
i=1

(εi (R(Y, ei , X, Jαei )+ εi R(ei , X, Y, Jαei )))+
1
2

4n∑
i=1

εi B(X, Y, ei , Jαei )

= −
1
2

Ric(Y, JαX)+
1
2

Ric(X, JαY )+
1
2

4n∑
i=1

εi B(X, Y, ei , Jαei )

+
1

2n

{
−εαρβ(Jγ Y, X)+ εαρβ(Jγ X, Y )− εαργ (JβX, Y )+ εαργ (JβY, X)

}
. (4.55)

On the other hand, using (4.46), we calculate

4∑
i=1

εi D(X, ei , Jαei , Y ) =

4n∑
i=1

{εi R(X, ei , Jαei , Y )+ εi R(Y, ei , Jαei X)}

= Ric(Y, JαX)+ Ric(X, JαY )

+
1
n

{
εαρβ(X, Jγ Y )+ εαρβ(Y, Jγ X)− εαργ (Y, JβX)− εαργ (X, JβY )

}
. (4.56)

Combining (4.55) and (4.56), we derive

nεαρα(X, JαY )+ εβρβ(X, JβY )+ εγ ργ (X, Jγ Y )

= nRic(X, Y )+
n

2
εαBα(X, JαY )+

n

2
εαDα(X, JαY ), (4.57)

where the tensors Bα and Dα are defined by Bα(X, Y ) =
∑4n

i=1 εi B(X, Y, ei , Jαei ) and Dα(X, Y ) =∑4n
i=1 εi D(X, ei , Jαei , Y ). Taking into account (4.54), we get the expression

Dα(X, Y ) = −(∇X t)(JαY )− (∇Y t)(JαX) α = 1, 2, 3. (4.58)

To calculate Bα + Dα we use (4.51) twice and (4.58). After some calculations, we derive

Bα(X, Y )+ Dα(X, Y ) =
1
2

4n∑
i=1

εi dT (X, Y, ei , Jαei )− 2(∇X t)(JαY ), α = 1, 2, 3. (4.59)

We substitute (4.59) into (4.57). Solving the system obtained, we obtain

(n − 1)(εαρα(X, JαY )− εβρβ(X, JβY )) =
n

2
(εα(dT )α(X, JαY )− εβ(dT )β(X, JβY )). (4.60)

Finally, (4.57) and (4.59) imply (4.49). �

Theorem 4.4. On a PQKT manifold (M4n, g, (Jα) ∈ P) (n > 1) the (2, 0) + (0, 2) parts of the Ricci forms ρα , ρβ
with respect to Jγ coincide in the sense that the next identity holds

ρα(JβX, JβY )+ εβρα(X, Y )+ εγ ργ (JβX, Y )+ εγ ργ (X, JβY ) = 0. (4.61)

Proof. We need the following

Lemma 4.5. The tensors Lα(X, Y ) =
∑4n

i=1 εi g(T (X, ei ), T (Y, Jαei )), for α = 1, 2, 3, are related by:

Lα(JβX, JβY )+ εβLα(X, Y )+ εγ Lγ (JβX, Y )+ εγ Lγ (X, JβY ) = 0. (4.62)
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Proof. The formula (4.62) follows from equalities

Lα(X, Y ) =

4n∑
i=1

εi g(T (X, ei ), T (Y, Jαei )) = −

4n∑
i=1

εi g(T (X, Jαei ), T (Y, ei ))

=

4n∑
i, j=1

εiε j T (X, ei , e j )T (e j , Y, Jαei ) =

4n∑
i, j=1

εiε j T (X, ei , e j )g(T (e j , Y ), Jαei )

=

4n∑
i, j=1

εiε j T (X, e j , ei )g(ei , JαT (Y, e j )) = −

4n∑
j=1

ε j g(T (X, e j ), JαT (Y, e j ))

and property (3.16). �

From the first Bianchi identity the next sequence of equalities follows

2ρα(JβX, JβY )+

4n∑
i=1

εi R(JβY, ei , JβX, Jαei )+

4n∑
i=1

εi R(ei , JβX, JβY, Jαei ) = 2εγ (∇Jβ X t)Jγ Y

− 2εγ (∇JβY t)Jγ X +

4n∑
i=1

εi (∇ei T )(JβX, JβY, Jαei )

+

4n∑
i=1

εi g(T (JβX, JβY ), T (ei , Jαei ))− 2Lα(JβX, JβY ).

2εβρα(X, Y )+

4n∑
i=1

εiεβ R(Y, ei , X, Jαei )+

4n∑
i=1

εiεβ R(ei , X, Y, Jαei ) = −2εβ(∇X t)JαY

+ 2εβ(∇Y t)JαX +

4n∑
i=1

εiεβ(∇ei T )(X, Y, Jαei )+

4n∑
i=1

εiεβg(T (X, Y ), T (ei , Jαei ))− 2εβLα(X, Y ).

2εγ ργ (JβX, Y )+

4n∑
i=1

εiεγ R(Y, ei , JβX, Jγ ei )+

4n∑
i=1

εiεγ R(ei , JβX, Y, Jγ ei ) = −2εγ (∇Jβ X t)Jγ Y

− 2εβ(∇Y t)JαX +

4n∑
i=1

εiεγ (∇ei T )(JβX, Y, Jγ ei )

+

4n∑
i=1

εiεγ g(T (JβX, Y ), T (ei , Jγ ei ))− 2εγ Lγ (JβX, Y ).

2εγ ργ (X, JβY )+

4n∑
i=1

εiεγ R(JβY, ei , X, Jγ ei )+

4n∑
i=1

εiεγ R(ei , X, JβY, Jγ ei ) = 2εβ(∇X t)JαY

+ 2εγ (∇JβY t)Jγ X +

4n∑
i=1

εiεγ (∇ei T )(X, JβY, Jγ ei )

+

4n∑
i=1

εiεγ g(T (X, JβY ), T (ei , Jγ ei ))− 2εγ Lγ (X, JβY ).

The sum of all these equalities, (4.46) and the fact that T is a (1, 2)+ (2, 1)-form with respect to each Jα give

2(n − 1)
n

ρα(JβX, JβY )+
2(n − 1)

n
εβρα(X, Y )+

2(n − 1)
n

εγ ργ (JβX, Y )+
2(n − 1)

n
εγ ργ (X, JβY )

= −2Lα(JβX, JβY )− εβ2Lα(X, Y )− εγ 2Lγ (JβX, Y )− εγ 2Lγ (X, JβY ).

From Lemma 4.5 and fact that (n > 1), we have (4.61). �
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We easily derive from Theorem 4.4.

Corollary 4.6. The (2, 0)+ (0, 2) parts of the 2-forms (dT )α , (dT )β with respect to Jγ coincide.

Theorem 4.7. On a 4n-dimensional (n > 1) PQKT manifold the following formula holds

εαρα(X, JαY )+ εαρα(JαX, Y ) = −
n

n + 1
(dt (X, Y )+ εαdt (JαX, JαY )). (4.63)

In particular, ρα is of type (1, 1) with respect to Jα , α = 1, 2, 3, if and only if dt is of type (1, 1) with respect to each
Jα , α = 1, 2, 3.

Proof. From the first Bianchi identity, formulas (3.16) and (4.46) it follows that

2(εαρα(X, JαY )+ εαρα(JαX, Y ))− εα(Ric(JαX, JαY )− Ric(JαY, JαX))− (Ric(X, Y )− Ric(Y, X))

+
1
n
(εβρβ(X, JβY )+ εβρβ(JβX, Y )+ εγ ργ (X, Jγ Y )+ εγ ργ (Jγ X, Y )

− ρβ(JαX, Jγ Y )− ρβ(Jγ X, JαY )+ ργ (JαX, JβY )+ ργ (JβX, JαY ))

= −2(dt (X, Y )+ εαdt (JαX, JαY ))+ δT (X, Y )+ εαδT (JαX, JαY ). (4.64)

First, we substitute X → JαX into (4.61) to obtain

εγ ρα(Jγ X, JβY )+ εβρα(JαX, Y )+ ργ (Jγ X, Y )+ εγ ργ (JαX, JβY ) = 0. (4.65)

After that we substitute Y → JαY into (4.61) to get

εγ ρα(JβX, Jγ Y )+ εβρα(X, JαY )+ ργ (X, Jγ Y )+ εγ ργ (JβX, JαY ) = 0. (4.66)

Summing up (4.65) and (4.66), we obtain

εαρα(X, JαY )+ εαρα(JαX, Y ) = εγ ργ (Jγ X, Y )+ εγ ργ (X, Jγ Y )+ ργ (JαX, JβY )

+ ργ (JβX, JαY )+ (ρα(Jγ X, JβY )+ ρα(JβX, Jγ Y )). (4.67)

We perform the cyclic permutation (α, β, γ ) → (β, γ, α) in (4.67) to obtain

εαρα(X, JαY )+ εαρα(JαX, Y ) = εβρβ(JβX, Y )+ εβρβ(X, JβY )− ρβ(JαX, Jγ Y )

− ρβ(Jγ X, JαY )− (ρα(Jγ X, JβY )+ ρα(JβX, Jγ Y )). (4.68)

Adding (4.67) to (4.68), we get

2(εαρα(X, JαY )+ εαρα(JαX, Y )) = εγ ργ (Jγ X, Y )+ εγ ργ (X, Jγ Y )+ εβρβ(JβX, Y )

+ εβρβ(X, JβY )+ ργ (JαX, JβY )+ ργ (JβX, JαY )− ρβ(JαX, Jγ Y )− ρβ(Jγ X, JαY ). (4.69)

Now, equalities (4.64), (4.68), (4.69) and Ric(X, Y )− Ric(Y, X) = −δT (X, Y ) (see [25]) prove the assertion. �

Corollary 4.8. On a 4n-dimensional (n > 1) PQKT manifold the following formula holds

εαρ
g
α(X, JαY )+ εαρ

g
α(JαX, Y ) = −

n − 1
2(n + 1)

(dt (X, Y )+ εαdt (JαX, JαY )). (4.70)

In particular, ρ?α is symmetric if and only if dt is of type (1, 1) with respect to each Jα , α = 1, 2, 3.

Proof. We get from (4.53) that

εαρ
g
α(X, JαY )+ εαρ

g
α(JαX, Y ) = εαρα(X, JαY )+ εαρα(JαX, Y )+

1
2
(dt (X, Y )+ εαdt (JαX, JαY )).

Now (4.70) is a consequence of (4.63). �

Proposition 4.9. On a 4n-dimensional (n > 1) PQKT manifold we have the equalities:

Scalα,α = Scalβ,β = Scalγ,γ , Scalα,β = 0, Scalα =
1
2
(dt,Φα). (4.71)
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Proof. Using (4.73), we obtain

2(n − 1)
n

(ρα(X, JαY )− ρβ(X, JβY )) = ((dT )α(X, JαY )− (dT )β(X, JβY )); (4.72)

(n − 1)εαρα(X, JαY ) =
n(n − 1)

n + 2
Ric(X, Y )−

n(n − 1)
n + 2

(∇X t)Y +
n

4(n + 2)
×

{
(n + 1)εα(dT )α(X, JαY )− εβ(dT )β(X, JβY )− εγ (dT )γ (X, Jγ Y )

}
. (4.73)

Take the appropriate trace in (4.72), to get Scalα,α = Scalβ,β , Scalα,β = 0. The last equality in (4.71) is a direct
consequence of Scalα,β = 0 and (4.73). �

Definition. The three coinciding traces of the Ricci forms on a 4n-dimensional PQKT manifold (n > 1) give a well
defined global function. We call this function the paraquaternionic scalar curvature of the PQKT connection and
denote it by ScalP := Scalα,α .

Proposition 4.10. On a 4n-dimensional (n > 1) PQKT manifold we have

Scalgα = Scalgβ = Scalgγ = ScalP − δt + ‖t‖2
−

1
12

‖T ‖
2,−εγ Scalgα,β = Scalγ =

1
2
(dt,Φγ ). (4.74)

Proof. The curvature Rg of the Levi-Civita connection is related to R via (4.53). Taking the traces in (4.53) and using
(3.19), we obtain

εαρ
g
α(X, JαY ) = εαρα(X, JαY )+

1
2
(∇X t)Y − εα

1
2
(∇JαY t)JαX

+
1
2
εαt (JαT (X, JαY ))+

1
4

4n∑
i=1

εiεαg (T (X, ei ), T (JαY, Jαei )) . (4.75)

To finish, take the appropriate traces in (4.75) and apply Proposition 4.9. �

Definition. The three coinciding traces of the Riemannian Ricci forms on a 4n-dimensional PQKT manifold (n > 1)
give a well defined global function. We call this function the paraquaternionic ∗-scalar curvature and denote it by
ScalgP := Scalgα,.

Proposition 4.11. On a 4n-dimensional (n > 1) PQKT manifold (M, g,P) the scalar curvatures are related by

Scalg =
n + 2

n
ScalP − 3δt + 2‖t‖2

−
1
12

‖T ‖
2,

ScalgP = ScalQ − δt + ‖t‖2
−

1
12

‖T ‖
2,

Scal =
n + 2

n
ScalP − 3δt + 2‖t‖2

−
1
3
‖T ‖

2.

Proof. We derive from (4.53) that

Ricg(X, Y ) = Ric(X, Y )+
1
2
δT (X, Y )+

1
4

2n∑
i=1

g (T (X, ei ), T (Y, ei )) ,

Scalg = Scal +
1
4
‖T ‖

2.

(4.76)

Take the trace in (4.73) to get the first equality of the proposition. The second equality is already proved
in Proposition 4.10. The last one is a consequence of (4.76) and the already proven first equality in the
proposition. �
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5. PQKT manifolds with parallel torsion and homogeneous PQKT structures

Let (G/K , g) be a reductive (locally) homogeneous pseudo-Riemannian manifold. The canonical connection ∇ is
characterized by the properties ∇g = ∇T = ∇ R = 0 [32]. A homogeneous paraquaternionic Hermitian manifold
(resp. homogeneous hyper-para-Hermitian) manifold (G/K , g,P) is a homogeneous pseudo-Riemannian manifold
with an invariant paraquaternionic Hermitian subbundle P (resp. three invariant anti-commuting (para)complex
structures). This means that the bundle P (resp. each of the (para)complex structures) is parallel with respect
to the canonical connection ∇. The torsion of ∇ is totally skew symmetric if and only if the homogeneous
pseudo-Riemannian manifold is naturally reductive. Homogeneous PQKT (resp. HPKT) manifolds are homogeneous
paraquaternionic Hermitian (resp. homogeneous hyper-para-Hermitian) manifolds which are naturally reductive.

We show that there are no homogeneous PQKT manifolds with torsion 4-form dT of type (2, 2) with respect to
each Jα in dimensions greater than four. First, we prove the following technical result

Proposition 5.1. Let (M, g, (Jα),∇) be a 4n-dimensional (n > 1) PQKT manifold with 4-form dT of type (2, 2)
with respect to each Jα, α = 1, 2, 3. Suppose that the torsion is parallel with respect to the PQKT connection. Then
the Ricci forms ρα are given by

εαρα(X, JαY ) = λg(X, Y ), α = 1, 2, 3, (5.77)

where λ is a smooth function on M.

Proof. Let the torsion be parallel, i.e. ∇T = 0. This implies that the Ricci tensor is symmetric [20]. The equalities
(4.51) and (4.52) lead to

B(X, Y, Z ,U ) =
σ

XY Z
{g(T (X, Y ), T (Z ,U ))} =

1
2

dT (X, Y, Z ,U ). (5.78)

We get D = 0 from (4.54).
Suppose now that the 4-form dT is of type (2, 2)with respect to each Jα, α = 1, 2, 3. Then it satisfies the equalities

−εαdT (X, Y, Z ,U ) = dT (JαX, JαY, Z ,U )+ dT (JαX, Y, JαZ ,U )+ dT (X, JαY, JαZ ,U ). (5.79)

Arguments similar to those we used in the proof of Proposition 3.1, but applying (5.79) instead of (3.16), yield

Lemma 5.2. On a PQKT manifold with 4-form dT of type (2, 2) with respect to each Jα, α = 1, 2, 3, the following
equalities hold:

(dT )1(X, J1Y ) = (dT )2(X, J2Y ) = −(dT )3(X, J3Y ), (5.80)

(dT )α(X, JαY ) = −(dT )α(JαX, Y ), α = 1, 2, 3. (5.81)

We substitute (5.80), (5.78) and D = 0 into (4.73) to get

ρ1(X, J1Y ) = ρ2(X, J2Y ) = −ρ3(X, J3Y ), (5.82)

εαρα(X, JαY ) =
n

n + 2
Ric(X, Y )+

n

4(n + 2)
εα(dT )α(X, JαY ), α = 1, 2, 3. (5.83)

The equality (5.81) shows that the 2-form dTα is a (1, 1)-form with respect to Jα . Hence, the dTα is (1, 1)-form with
respect to each Jα, α = 1, 2, 3, because of (5.80). Since the Ricci tensor Ric is symmetric, (5.83) shows that the Ricci
tensor Ric satisfies Ric(JαX, JαY ) = −εαRic(X, Y ), α = 1, 2, 3, for each Jα and the Ricci forms ρα, α = 1, 2, 3, are
(1, 1)-forms with respect to all Jα, α = 1, 2, 3. Taking into account (4.46), we obtain

−εαR(X, JαX, Z , JαZ)+ R(X, JαX, Jβ Z , Jγ Z)+ R(JβX, Jγ X, Z , JαZ)

− εαR(JβX, Jγ X, Jβ Z , Jγ Z) =
1
n

(
−εαρα(X, JαX)+ ρα(JβX, Jγ X)

)
g(Z , Z)

= −
2
n
εαρα(X, JαX)g(Z , Z) (5.84)



86 S. Zamkovoy / Journal of Geometry and Physics 57 (2006) 69–87

where the last equality of (5.84) is a consequence of the following identity

ρα(JβX, Jγ X) = εβρβ(JβX, X) = −εαρα(X, JαX).

The left-hand side of (5.84) is symmetric with respect to the vectors X, Z because D = 0. Hence,
ρα(X, JαX)g(Z , Z) = ρα(Z , JαZ)g(X, X), α = 1, 2, 3. The last equality together with (5.82) implies (5.77). �

Theorem 5.3. Let (M, g, (Jα)) be a 4n-dimensional (n > 1) PQKT manifold with 4-form dT of type (2, 2) with
respect to each Jα, α = 1, 2, 3. Suppose that the torsion is parallel with respect to the PQKT connection. Then
(M, g, (Jα)) is either an HPKT manifold with parallel torsion or a PQK manifold.

Proof. We apply Proposition 5.1. If the function λ = 0 then ρα = 0, α = 1, 2, 3, by (5.77) and Proposition 4.2
implies that the PQKT manifold is actually an HPKT manifold.

Let λ 6= 0. The condition (5.77) determines the torsion completely. We proceed by involving (4.47) in the
computations. We calculate, using (2.1) and (5.77), that

(∇Zρα)(X, Y ) = λ
{
ωβ(Z)Fγ (X, Y )+ εγωγ (Z)Fβ(X, Y )

}
+ dλ(Z)Fα(X, Y ). (5.85)

Applying the operator d to (4.46), we get taking into account (5.77) that

dρα = λ(εγ Fβ ∧ ωγ + ωβ ∧ Fγ ). (5.86)

On the other hand, we have

dρα(X, Y, Z) =
σ

XY Z
{(∇Zρα)(X, Y )+ λ(T (X, Y, JαZ))} , α = 1, 2, 3. (5.87)

Comparing the left-hand sides of (5.86) and (5.87) and using (5.85), we derive

λ
σ

XY Z
{g(T (X, Y ), JαZ)} = −dλ ∧ Fα(X, Y, Z), α = 1, 2, 3.

The last equality implies λT = εα Jαdλ ∧ Fα, α = 1, 2, 3. If λ is a non-zero constant then T = 0. If λ is not a
constant then there exists a point p ∈ M and a neighbourhood Vp of p such that λ|Vp 6= 0. Then

T = εα Jαd ln λ ∧ Fα, α = 1, 2, 3. (5.88)

We take the trace in (5.88) to obtain

4(n − 1)Jαd ln λ = 0, α = 1, 2, 3. (5.89)

Eq. (5.89) forces dλ = 0 since n > 1 and consequently T = 0 by (5.88). Hence, the PQKT space is a PQK manifold
which completes the proof. �

On a locally homogeneous PQKT manifold the torsion and curvature are parallel and Theorem 5.3 leads to the
following

Theorem 5.4. A (locally) homogeneous 4n-dimensional (n > 1) PQKT manifold with torsion 4-form dT of type
(2, 2) is either a (locally) homogeneous HPKT space or a (locally) symmetric PQK space.

Theorem 5.4 shows that there are no homogeneous (proper) PQKT manifolds with torsion 4-form of type (2, 2) in
dimensions greater than four.
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